59 research outputs found

    Imperfect-Recall Abstractions with Bounds in Games

    Full text link
    Imperfect-recall abstraction has emerged as the leading paradigm for practical large-scale equilibrium computation in incomplete-information games. However, imperfect-recall abstractions are poorly understood, and only weak algorithm-specific guarantees on solution quality are known. In this paper, we show the first general, algorithm-agnostic, solution quality guarantees for Nash equilibria and approximate self-trembling equilibria computed in imperfect-recall abstractions, when implemented in the original (perfect-recall) game. Our results are for a class of games that generalizes the only previously known class of imperfect-recall abstractions where any results had been obtained. Further, our analysis is tighter in two ways, each of which can lead to an exponential reduction in the solution quality error bound. We then show that for extensive-form games that satisfy certain properties, the problem of computing a bound-minimizing abstraction for a single level of the game reduces to a clustering problem, where the increase in our bound is the distance function. This reduction leads to the first imperfect-recall abstraction algorithm with solution quality bounds. We proceed to show a divide in the class of abstraction problems. If payoffs are at the same scale at all information sets considered for abstraction, the input forms a metric space. Conversely, if this condition is not satisfied, we show that the input does not form a metric space. Finally, we use these results to experimentally investigate the quality of our bound for single-level abstraction

    Scalable First-Order Methods for Robust MDPs

    Full text link
    Robust Markov Decision Processes (MDPs) are a powerful framework for modeling sequential decision-making problems with model uncertainty. This paper proposes the first first-order framework for solving robust MDPs. Our algorithm interleaves primal-dual first-order updates with approximate Value Iteration updates. By carefully controlling the tradeoff between the accuracy and cost of Value Iteration updates, we achieve an ergodic convergence rate of O(A2S3log(S)log(ϵ1)ϵ1)O \left( A^{2} S^{3}\log(S)\log(\epsilon^{-1}) \epsilon^{-1} \right) for the best choice of parameters on ellipsoidal and Kullback-Leibler ss-rectangular uncertainty sets, where SS and AA is the number of states and actions, respectively. Our dependence on the number of states and actions is significantly better (by a factor of O(A1.5S1.5)O(A^{1.5}S^{1.5})) than that of pure Value Iteration algorithms. In numerical experiments on ellipsoidal uncertainty sets we show that our algorithm is significantly more scalable than state-of-the-art approaches. Our framework is also the first one to solve robust MDPs with ss-rectangular KL uncertainty sets

    Smoothing Method for Approximate Extensive-Form Perfect Equilibrium

    Full text link
    Nash equilibrium is a popular solution concept for solving imperfect-information games in practice. However, it has a major drawback: it does not preclude suboptimal play in branches of the game tree that are not reached in equilibrium. Equilibrium refinements can mend this issue, but have experienced little practical adoption. This is largely due to a lack of scalable algorithms. Sparse iterative methods, in particular first-order methods, are known to be among the most effective algorithms for computing Nash equilibria in large-scale two-player zero-sum extensive-form games. In this paper, we provide, to our knowledge, the first extension of these methods to equilibrium refinements. We develop a smoothing approach for behavioral perturbations of the convex polytope that encompasses the strategy spaces of players in an extensive-form game. This enables one to compute an approximate variant of extensive-form perfect equilibria. Experiments show that our smoothing approach leads to solutions with dramatically stronger strategies at information sets that are reached with low probability in approximate Nash equilibria, while retaining the overall convergence rate associated with fast algorithms for Nash equilibrium. This has benefits both in approximate equilibrium finding (such approximation is necessary in practice in large games) where some probabilities are low while possibly heading toward zero in the limit, and exact equilibrium computation where the low probabilities are actually zero.Comment: Published at IJCAI 1

    Online Convex Optimization for Sequential Decision Processes and Extensive-Form Games

    Full text link
    Regret minimization is a powerful tool for solving large-scale extensive-form games. State-of-the-art methods rely on minimizing regret locally at each decision point. In this work we derive a new framework for regret minimization on sequential decision problems and extensive-form games with general compact convex sets at each decision point and general convex losses, as opposed to prior work which has been for simplex decision points and linear losses. We call our framework laminar regret decomposition. It generalizes the CFR algorithm to this more general setting. Furthermore, our framework enables a new proof of CFR even in the known setting, which is derived from a perspective of decomposing polytope regret, thereby leading to an arguably simpler interpretation of the algorithm. Our generalization to convex compact sets and convex losses allows us to develop new algorithms for several problems: regularized sequential decision making, regularized Nash equilibria in extensive-form games, and computing approximate extensive-form perfect equilibria. Our generalization also leads to the first regret-minimization algorithm for computing reduced-normal-form quantal response equilibria based on minimizing local regrets. Experiments show that our framework leads to algorithms that scale at a rate comparable to the fastest variants of counterfactual regret minimization for computing Nash equilibrium, and therefore our approach leads to the first algorithm for computing quantal response equilibria in extremely large games. Finally we show that our framework enables a new kind of scalable opponent exploitation approach

    Statistical Inference and A/B Testing for First-Price Pacing Equilibria

    Full text link
    We initiate the study of statistical inference and A/B testing for first-price pacing equilibria (FPPE). The FPPE model captures the dynamics resulting from large-scale first-price auction markets where buyers use pacing-based budget management. Such markets arise in the context of internet advertising, where budgets are prevalent. We propose a statistical framework for the FPPE model, in which a limit FPPE with a continuum of items models the long-run steady-state behavior of the auction platform, and an observable FPPE consisting of a finite number of items provides the data to estimate primitives of the limit FPPE, such as revenue, Nash social welfare (a fair metric of efficiency), and other parameters of interest. We develop central limit theorems and asymptotically valid confidence intervals. Furthermore, we establish the asymptotic local minimax optimality of our estimators. We then show that the theory can be used for conducting statistically valid A/B testing on auction platforms. Numerical simulations verify our central limit theorems, and empirical coverage rates for our confidence intervals agree with our theory.Comment: - fix referenc
    corecore